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SUMMARY 

The thesis wider objective aimed to develop an assessment and monitoring computerized 

system that uses the satellite images to Land-Use Land-Cover classification (LULC) and 

bathymetry detection in coastal/Lakes water bodies. 

So, the first part of this research assessed a methodology for LULC using multispectral 

satellite images. The study was executed in a heterogeneous coastal area separated to five 

classes: sand, building, water, vegetation, and grass-lake-type. This methodology used the 

Bagging Ensemble (BE) technique with Random Forest (RF) as a base classifier for 

improving classification performance through decreasing errors and prediction variance. A 

supervised pixel-based classification method with Principle Component Analysis (PCA) for 

feature selection from available attributes using a Landsat 8 satellite image was proposed. 

The used attributes were coastal, visible, near-infrared, short-wave infrared and thermal 

bands as well as Normalized Difference Vegetation Index (NDVI) besides Normalized 

Difference Water Index (NDWI). To assess the classification accuracy of BE with RF, it was 

compared to BE with Support Vector Machine (SVM) and Neural Network (NN) as base 

classifiers. The results were assessed according to omission, commission errors, and overall 

accuracy. The revealed results of the proposed methodology using BE with RF outperforms 

NN and SVM classifiers with 93.3% overall accuracy. The BE with SVM and NN as base 

classifiers produced 92.6% and 92.1% overall accuracy, respectively. It was confirmed that 

using BE with RF as a base classifier outperforms SVM and NN as base classifiers.  

On the other hand, the second part of this study assessed the performance of three 

proposed empirical approaches the ensemble regression trees fitting algorithm using bagging 

(BAG), ensemble regression trees fitting algorithm of least squares boosting (LSB), and 

support vector regression algorithm (SVR) for bathymetry calculations in four various areas: 

the shallow coastal area of El-Burullus Inlet, Egypt, which is a turbid sandy bottom area with depths 

to 6 m; the Alexandria harbor shallow coastal area, Egypt, as an example of a low-turbidity, 

silt-sand bottom water area with depths ranging from 4 m to 10.5 m; the Lake Nubia entrance 

zone, Sudan, which is considered a high-turbidity, unsteady, clay bottom area with a depth of 

6 m; and Shiraho, Ishigaki Island, Japan, a coral reef area with a depth of 14 m. Landsat 8 

and Spot 6 satellite images were used to assess the performance of the proposed models. 

These proposed models were used to obtain bathymetric maps using the reflectance of green, 

red bands, blue/red besides green/red band ratios. The bathymetry results of the proposed 

models were compared with the corresponding results produced from two conventional 
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empirical methods: the neural network (NN) model and the Lyzenga generalized linear model 

(GLM). Compared with echosounder field points, BAG, LSB, and SVR results revealed 

higher accuracy ranges from 0.04 to 0.35 m more than GLM. The BAG algorithm, produced 

the most correct results. 

In addition, the third part of the study suggested RF and Multi-Adaptive Regression 

Spline (MARS) approaches for bathymetry mapping. Data from Landsat 7, Landsat 8, and 

Spot 6 satellite images were used to assess the performance of these models. These models 

were used to obtain bathymetric maps using the same abovementioned inputs. The algorithms 

were tested over the abovementioned study areas except El-Burullus areas which was 

replaced with El Nubia entrance zone using Landsat 7 image. The results were compared 

with the same two conventional empirical methods NN and GLM. When compared with field 

points, the RF and MARS results outperformed Lyzenga GLM results. Furthermore, the RF 

approach produced more accurate results with average 0.25 m RMSE enhancements range 

than the NN model.  

Finally, the fourth part of this study proposed BE as a hybrid based approach for 

bathymetry detection. This approach was applied in two diverse areas with different number 

of available field points: Alexandria port, Egypt, and a part of Shiraho Island, Japan, with 

12.5 m water depths. For NN and RF methods the green and red band logarithms corrected 

from atmospheric and sun-glint systematic errors of Landsat 8 and Quickbird satellite images 

were set as input data and water depths as output. The proposed approach ensemble the 

outputs from NN and RF approaches. To validate the improvement of BE proposed approach, 

it was compared with NN and RF results. Achieved results were also compared with 

echosounder water depths field data. From the produced results, around 20 cm and 10 cm 

improvements in the accuracy of detecting depths over two studied areas, respectively. As a 

result, it can be concluded that BE ensemble produced more accurate results than using single 

NN or RF approaches for bathymetry mapping over diverse areas. 
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CHAPTER 1 

INTRODUCTION 

1.1. Land Cover Classification  

Land Use Land Cover (LULC) mapping using multispectral images has numerous benefits, 

with covering large areas, fast acquisition to huge amounts of data, and cheaper costs 

compared to field methods [1][2]. For correct LULC classification, a proper algorithm is 

required. Therefore, several researchers have put forth great effort to increase classification 

accuracy by developing several classification approaches [3]. In recent times, Ensemble 

Classifiers (EC), or effective Multiple Classifiers Fusion (MCF), have been found to overtake 

single classifier systems [4]. By exploiting the benefits of diverse classification methods and 

decreasing their uncorrelated errors by fusing them, the overall accuracy can be enhanced [5].  

Dara [5] and Benediktsson et al. [6] demonstrated the various approaches for multiple 

classification fusion systems. The ensemble classifier can be applied using many techniques, 

such as bagging, boosting, random forest, majority voting, and the weighted sum of base 

classifiers. Du et al. [7] and used various combinations of approaches including parallel 

bagging and sequential boosting classifier systems for classifying hyperspectral data. Salah et 

al. [1] used Fuzzy Majority Voting and Dempster-Shafer (DS) techniques for combining 

classification results of three different classifiers using Lidar and aerial images. Chu and Ge 

[3] used Feature Selection (FS) methods with Genetic Algorithm (GA) and multiple 

classifiers combination based on Dempster-Shafer Theory of Evidence for classifying land 

cover features using integration of SAR and satellite imagery. Guan et al. [8] applied RF to 

automatically select the optimal and uncorrelated features for land-use classification using a 

combination of Lidar data and ortho-imagery. Samia et al. [4] proposed a better ensemble 

algorithm depending on the margin theory as a fundamental for the new bagging technique to 

reduce both the required training data set and the complexity of ensemble approach, thereby 

enhancing the accuracy.  

Zheng [9] used boosting and bagging ensemble techniques with NN as base classifiers and 

compared it against SVM and logistic regression models for binary prediction with financial 

time series data. The results show the bagging of NN was superior to SVM and logistics 

regression models, with a reduction of prediction variance. 
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Akar and Güngör [10] compared the RF ensemble technique to SVM and gentle 

adaboosting (GAB) using two different satellite images, Ikonos and Quickbird. The results 

show RF outperforms SVM and GAB.  

Kulkarni and Kelkar [11] applied bagging, boosting, and adaboosting ensemble techniques 

with backpropagation neural networks with different numbers of hidden neurons for 

classifying Landsat satellite imagery. These ensembles were compared with single 

backpropagation neural network and radial basis function network. The achieved results 

demonstrated the outperforming of ensemble techniques compared to single classifiers. 

Further, the three ensemble methods gave almost equal results.  

1.2.  Bathymetry Detection  

Coastal and lake shallow areas bathymetry is important for various applications, for 

instance, spatial monitoring of lakes, sustainable management of natural, and resources 

coastal engineering sciences [12-13-14-15]. Additionally, sediments erosion and deposition 

in these shallow areas are rapid because of wave propagation, tidal currents, as well as severe 

human activities. Consequently, accurate measurements and updated monitoring of these 

areas, particularly bathymetry, need to be accomplished.  

At present, single and multibeam echosounders as well as Lidar represent the conventional 

approaches for bathymetry measurements. The multibeam echosounder is particularly useful 

for deep waters with depths up to 500 m due to its higher accuracy and complete bottom 

coverage. On the other hand, the single-beam echosounder can perform sea bottom maps with 

suitable vertical accuracy at cheaper cost than the multibeam echosounder [16]. Nevertheless, 

despite the high level of depth accuracy they can produce, these systems are expensive and 

difficult to use, particularly in shallow zones where coral reefs, rocks, and general 

shallowness are an obstacle to the navigation of surveying ships [17]. In recent times, 

airborne Lidar technology has been developed for bathymetry applications. Still, both 

systems are expensive, time consuming, laborious, and have relatively low coverage 

capability. 

Optical satellite images represent a time-effective, wide-coverage, and cheaper alternative 

to conventional techniques for bathymetry applications [16].  

In line with the previous literature review, two methods have been used for bathymetry 

detection: analytical and empirical. The analytical techniques using spectral look- up tables in 

interpretation of remote sensing data especially in the water depths determination [18]-[19]. 
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These methods need the spectral data about the bottom surface reflectance, suspended and 

dissolved substances and applied with hyperspectral satellite or airborne images [20]. On the 

other hand, empirical methods rely on the relation between the reflectance of the water 

bottom surface and water depths in sample positions, which makes these methods simpler. 

Lyzenga and Stumpf methods are counted the most broadly used empirical methods for 

bathymetric data detection [20]. 

Lyzenga [21] presented the log-linear empirical methodology using single band for 

determining water depths from satellite or airborne images. The log-linear theory was 

dependent on get rid of all other reflected values affecting water bottom surface signals. 

Lately, the log-linear approach was developed to create a correlation between several bands 

and bathymetric values by Lyzenga et al. [22]. The later approach was performed 

successively by further studies using diverse satellite images: Quickbird [23], Worldview 2 

[24], Spot 4 [16], in addition to Landsat 8 images [15]. 

Stumpf et al. [25] developed another method dependent on band ratios, as the difference in 

attenuation between two different spectral bands can be used for determining bathymetry. 

Lately, this approach has been improved by other scientists for instance Su et al. [26] and 

Bramante et al. [27]. 

In addition to these two empirical approaches, a novel alternative approach was created by 

Ceyhun and Yalçın [14] for bathymetry mapping using the Neural Network (NN) technique. 

This approach implement a nonlinear relation between satellite image spectral bands and 

bathymetric values, cope the drawbacks of regressive approaches. Continuously, numerous 

scientists have confirmed the precedency of NN method to traditional approaches using 

diverse satellite images, such as, Landsat images [28], IRS P6-LISS III images [29], and 

Quickbird images [30]. More details about bathymetry detection methods from satellite 

images can be found in [31].   

1.3.  General Research Gaps 

First for LULC classification, Bagging in other words (bootstrap aggregating) is one of the 

most prevalent ensemble approaches, designed initially for improving machine learning 

methods. Decreasing the variance of unstable methods for instance NN, SVM, and Decision 

trees by averaging diverse algorithms is the main improvement of bagging method. 
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Subsequently, the results will be better than fitting a single base classifier. Also, this 

technique decreases the probabilities of over-fitting [33]. 

Bagging and Random Forest techniques have been broadly used for LCLU classification. 

This study is probably, to the best of authors’ knowledge, the first study for integrating these 

techniques for classifying multispectral satellite imagery. 

Second for Bathymetry detection, analytical approaches have three major demerits. First, 

the hyperspectral satellite images used by these approaches are not accessible for enormous 

areas with coarse spatial resolution. Furthermore, the alternative airborne techniques are 

costly especially for wide coverage areas. Second, the analysis of the hyperspectral images is 

computationally difficult. Finally, these methods are comparatively complex. As a result, the 

empirical methods with multispectral imageries considered a valuable alternative [32]. 

However, Lyzenga, Stumpf, and NN methods have numerous demerits. The Lyzenga 

approach suppose that the bottom cover surface is entirely homogenous and that the water 

column is similar in the entire bottom cover area. The Stumpf approach overcomes this 

drawback; still, it has no physical origin moreover its parameters are calculated by a trial 

procedure [28]. Finally, the NN method has numerous drawbacks for example it’s complex 

black-box nature; sensitive to slightly minor alteration in the input data values, resulting in 

high variances in output results; and its weakness to overfit the input bathymetry data.  

1.4. Research Objectives 

The thesis wider objective is to develop an assessment and monitoring computerized 

system that uses the satellite images for LULC classification over coastal/Lakes water bodies. 

In addition, to detect bathymetry over the same coastal/Lakes areas. 

In the first part of this study a LULC classification methodology was proposed using BE of 

RF as a base classifier. This proposed approach reduces the limitations of previous 

approaches, such as prediction variances, and thus improves the overall accuracy. The 

methodology was evaluated using Landsat 8 imagery of the El-Burullus Lake in Egypt, and 

compared with two other previous methods. The criteria used to evaluate the results include 

commission, omission errors, and the overall accuracy of each classifier. 

In addition, this study proposed various empirical approaches for bathymetry detection in 

shallow coastal or lake areas and endeavors to overcome the disadvantages of the NN and 

Lyzenga generalized linear model (GLM) methods. These approaches are Bagging (BAG), 
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least squares boosting (LSB), support vector regression algorithm (SVR), random forest (RF), the 

multi-adaptive regression spline (MARS), and Bagging Ensemble (BE) of two supervised 

algorithms. All the proposed algorithms are more stable and more invincible to overfitting 

than NN, simpler than analytical approaches, and less affected by other environmental factors 

than Lyzenga GLM. The proposed bathymetry methodologies were applied using various 

satellite images. The achieved bathymetry results are then evaluated and compared with 

echosounder bathymetry data over different study areas. 

The study aimed to: 

1) Proposes improved method of LULC classification for assessment of water bodies 

detection. 

2) Proposes improved methods for bathymetry determination using Multispectral images. 

The proposed improved new methods can be used for bathymetry detection on the shallow 

water bodies including coral reefs areas. 

1.5. Thesis Layout 

The remainder of this thesis is structured as follows: 

Chapter 2: Study Areas and Available Data.  

Chapter 3: Methodology.   

Chapter 4: Results. 

Chapter 5: This chapter contains discussions, summarizing the main findings of the research 

with comparison to related researches. Additionally, it contains concluding remarks of 

research. 

1.6. List of Publications 

         From the thesis, the following papers were published: 

1. Hassan Mohamed, Abdelazim Negm, Mahmoud Salah, Kazuo Nadaoka and Mohamed Zahran, 

“Assessment of proposed approaches for bathymetry calculations using multispectral satellite 

images in shallow coastal/lake areas: a comparison of five models,” Arabian Journal of 

Geosciences, Vol. 10, No. 42, (2017) [33]. 

2. Hassan Mohamed, Abdelazim Negm, Mohamed Zahran and Oliver C. Saavedra, “Assessment of 

Ensemble Classifiers using Bagging Technique for Improved Land Cover Classification of 
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Multispectral Satellite Images,”. The International Arab Journal of Information Technology 

(IAJIT), Vol. 15, No. 3, (online 2017) [34]. 

3. Hassan Mohamed, Abdelazim Negm, Kazuo Nadaoka, Tarek Abdelaziz and Mohamed Elsahabi, 

“Comparative study of approaches to bathymetry detection in Nasser/Nubia Lake using 

multispectral SPOT-6 satellite imagery,” Hydrological Research Letters Journal, Vol. 10 (2016) 

No. 1 p. 45-50 [35]. 

4. Hassan Mohamed, Abdelazim Negm, Mohamed Zahran and Sommer Abdel-Fattah, “Estimation 

of Bathymetry Using High-resolution Satellite Imagery: Case Study El-Burullus Lake, Northen 

Nile Delta,” Book Chapter in The Handbook of Environmental Chemistry, Springer Berlin 
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CHAPTER 2 

STUDY AREAS AND AVAILABLE DATA  

 

This chapter presents the study areas and available data used for LULC classification and bathymetry 

detection.  

2.1.  Study Areas  

The study area located at the El-Burullus Lake and its surroundings. It is a coastal heterogeneous area 

with a diversity of main features as land, buildings, water, vegetation, and lake plants [37]. Hence, it can 

serve as a suitable test area for LCLU classification. Figure 2-1 illustrates the study area. 

 

Figure 2-1. El-Burullus Lake, Nile-Delta, Egypt. 

 

In this research, the bathymetry detection was divided to three parts and tested over six various areas 

with different satellite images. The first part of bathymetry study included four study areas as follow: 

The first study area was the El-Burullus Inlet coastal zone, which extends along the northern part of the 

El-Burullus Lake of Egypt, and has dimensions of 9 km in the east–west direction and 2.5 km in the 

north–south direction (see Figure 2-2). It is a nearly uniform shallow, turbid water area with depths up to 

6 m and high rates of sediment movement and coastal change. Most of the sea bottom is covered by sand 

[37]. 

The second study area was Alexandria harbor, Egypt (see Figure 2-3a). It is a properly deep, low 

turbidity, quiet water area, due to its coastal barriers, and has a depth range of 10.5 m. The port bottom 

cover surface is silt-sand.  
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The third study area was the entrance area of Lake Nubia, which is located in Sudan (see Figure 2-3b). 

It is a properly irregular, shallow, very turbid water area with depths up to 6 m with high amounts of 

sediment alterations in addition to annual flood changes. The lake has a clay bottom cover surface. 

 The forth study area was Shiraho which is a subtropical territory, located in the southeastern part of 

Ishigaki Island, Japan (see Figure 2-4). It is rough shallow and little turbid with depths up to 14 m. 

Shiraho is varied area with a rich marine biodiversity that consist of numerous ecosystems as seagrass, 

mangroves, and coral reefs. 

 

Figure 2-2. The 1st study area of El-Burullus coastal strait area, Egypt. 

       

                                          (a)                                                                         (b)  

Figure 2-3. (a) The 2nd study area of Alexandria port coastal area, Egypt (b) The 3rd study area of Nubia 

Lake entrance part, Sudan. 
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Figure 2-4. The 4th study area of Shiraho, Ishigaki Island, Japan. 

The second part of bathymetry study included the last abovementioned three areas of Alexandria 

harbor, Egypt, the Lake Nubia entrance zone, Sudan, and Shiraho, Ishigaki Island, Japan. In addition, 

another part from the south entrance of Nubia Lake was added for this study using Landsat 7 image as 

shown in figure 2-5. 

 

Figure 2-5. The added study area of Nubia Lake entrance zone, Sudan.  
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Finally, the third part of bathymetry study was performed over two study areas. In adittion to the 

abovementioned Alexandria harbor area, Egypt, a part of Shiraho, Ishigaki Island, Japan, was added for 

this study using Quickbird image as shown in figure 2-6.  

 

Figure 2-6. The added study area which is a part of Shiraho, Ishigaki Island, Japan.  

2.1.2. Available Satellite Images 

A Landsat 8 satellite image with eleven multispectral bands was used for LCLU classification of Lake El 

Burullus study area. The image was picked up on 14 August 2014 (see Figure 2-7).  

 

Figure 2-7. Landsat-8 satellite image over the selected study area. 

For bathymetry determination Landsat 8 satellite images were used for the first, second and the forth 

study areas. Also, Spot 6 image with a spatial resolution of 1.5 m was used for the third study area. The 

necessary parameters for performing radiometric images corrections were included in images metadata 

files. The first Landsat 8 image was acquired during quiet weather surroundings on 22 March 2014. The 

second Landsat 8 image was acquired during calm weather environments on 3 August 2014, and the third 
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Landsat 8 image was collected during windy surroundings on 5 June 2013. The Spot 6 image was 

acquired during quiet weather conditions on 12 January 2014. These four images were selected so as to 

be synchronised with echosounder field observation times for all the study areas. 

Moreover a Landsat 7 satellite image was added for the second part of bathymetry over the additional 

area of Lake Nubia entrance zone. The Landsat 7 image was collected during windy conditions on 15 

December 2009. 

Lastly, a Quickbird satellite image was added for the third part of the bathymetry study. Quickbird 

image have a spatial resolution of 0.6 m and was collected during windy conditions on 20 July 2007.   

2.1.3. Echosounder Data 

The field reference observed water depths of the first and second study areas used for validating the 

algorithms were acquired by a NaviSound model 210 Hydrographic Systems echosounder instrument 

with attached Trimble 2000 GPS. The maximum accessible depth level of this echosounder was 400 m, 

and its vertical accuracy was 0.01 m at 210 kHz (see Figures 2-8 and 2-9). The third study area observed 

field water depths were picked up by an Odom Hydrographic Systems Echotrac model DF 3200 MKII 

echosounder device with built-in DGPS. The depth range of the echosounder was 200 m and its vertical 

accuracy was 0.01 m ± 0.1% of depth (see Figure 2-10). Finally, the reference water depths of the forth 

study area were observed by a single beam Lowrance LCX-15MT dual frequency (50/200 kHz) 

transducer and 12-channel GPS antenna. The vertical accuracy was ± 0.03 m [38] (see Figure 2-11). 

Approximately 500 field points were observed for the first study area, 2500 field points were observed 

for the second study area, 12500 for the third study area, and 14500 for the fourth study area. These 

points were used for validation and evaluation of all the bathymetric approaches. 

 

Figure 2-8. Field bathymetry Reference points of 1st study area from echo-sounder. 
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Figure 2-9. Field bathymetry Reference points of the 2nd study area from echo-sounder. 

  

Figure 2-10. In-situ bathymetry Reference points of the 3rd study area from echo-sounder. 
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Figure 2-11. Field bathymetry Reference points of the 4th study area from echo-sounder. 

The additional area of the second part of bathymetry study over Lake Nubia entrance zone have about 

4500 observed field water depths. These points were picked up by an Odom Hydrographic Systems 

Echotrac model DF 3200 MKII echosounder device with built-in DGPS as shown in figure 2-12. 

   

Figure 2-12. Field bathymetry Reference points of the Lake Nubia added study area from echo-sounder. 
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Finally, the third part of bathymetry study a part of Shiraho, Ishigaki, Japan reef area was added. About 

8106 observed field water depths were picked up over this area with a single beam Lowrance LCX-15MT 

dual frequency (50/200 kHz) transducer with 12-channel GPS antenna (see Figures 2-13). 

    

Figure 2-13. Field bathymetry Reference points of added part of Shiraho study area from echo-sounder. 

The field data for Shiraho area were collected on 25-31 January 2013. Although there was a time 

difference between the Quickbird imagery collection and the field data observation but it is worth noting. 

As Shiraho area did not have any tsunami or big currents during these years so the bathymetry has no 

significant change [38]. 
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CHAPTER 3 

METHODOLOGY 

3.1. Proposed Methodology for LULC Classification 

The workflow processing steps for classifying Landsat-8 satellite image over El Burullus studied area 

were as follow: 

3.1.1. Imagery Data Pre-Processing 

First, calculating the spectral top of atmosphere reflectance of each pixel value from DN values using 

equation (1). 

Second, computing At-Satellite Brightness Temperature for each pixel values of thermal infrared bands 

from the computed radiances using the Thermal Atmospheric correction tool in Envi program. All the 

required values were available in the image metadata file. 

3.1.2. Creation of Attributes 

For increasing the classification accuracy two other attributes NDVI and NDWI were computed from 

visible and the near-infrared bands. The NDVI were calculated using red and near infrared bands also the 

NDWI using green and near infrared bands. All the abovementioned steps were performed in an ENVI 

environment. 

3.1.3. Selecting Uncorrelated Attributes using Principal Component Analysis Approach 

PCA approach was used for selecting uncorrelated attributes as it’s considered the most widely used 

method for feature selection from enormous data sets. 

3.1.4. Classification Algorithms 

RF, SVM and, NN with the back-propagation (BP) algorithm base classifiers were applied to LCLU 

classification then the ensemble is performed using the bagging approach. 

1. Artificial Neural Network [3] [45] [34] 

2. Support Vector Machines [39] [40] [41] [34] 

3. Random Forest [50] [27] [51] [34] 

4. Bagging Ensemble [30] [41] [56] [34] 

For more details, the abovementioned references can be checked. 
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The following Figure 3-1 illustrates the workflow processing steps for classifying Landsat-8 satellite 

image over El Burullus studied area. 

 

Figure 3-1. The processing steps for Landsat-8 images classification and classification accuracy 

comparison of all classifiers. 

3.2. Proposed Methodologies for Bathymetry Determination (the first part) 

All Landsat 8 and Spot 6 multispectral images of the studied areas were corrected for bathymetric 

mapping as follows: 1) Converting the image pixel values to radiance values using the images metadata 

file values according to equation 1.  

2) Correcting atmospheric and sun glint errors for the image radiance values using the FLAASH tool and 

equation 2, respectively. These two steps were accomplished using ENVI 5.3 program.  

3) Four inputs were extracted from the corrected reflectance images were used for training all approaches 

at the same location of sounding points. These values were red, green, blue/red, and green/red bands 

logarithms then the outputs were the detected water depths.  

4) For all study areas, these values were randomly separated to independent 75% training and 25% testing 

points. For example, for El Burullus study area the field points were divided to 1875 and 625 points for 

training and testing, respectively.  
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5) Finally, the evaluation of all outputs from various approaches were done using the same independent 

testing points depending on RMSE and R2 values.   

The following Figure 3-2 illustrates the workflow of the bathymetry detection steps of the first part. 

 

Figure 3-2. The processing steps of proposed methodologies for the first part of bathymetry mapping 

from satellite images by different approaches. 

3.2.1. Imagery Data-Preprocessing 

3.2.1.1. Spectral Top of Atmosphere Radiance 

Spectral top of atmosphere radiance were calculated from the imagery pixel digital numbers (DN) 

values for each pixel as follows [42]: 

Lλ= Ml * DN + Al                                                                     (1) 

Where Lλ = top of atmosphere spectral radiance, DN = digital number, Ml = multiplicative rescaling 

factor for radiances specified for each band, and Al = additive rescaling factor for radiances specified for 

each band. The Ml and Al values were presented in the images’ metadata files (MTL files). 
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3.2.1.2. Atmospheric Correction 

Atmospheric correction was performed to all images using the Fast Line-of-Sight Atmospheric 

Analysis of Hypercubes (FLAASHTM) tool in the Envi 5.3 software package. FLAASH carry out 

radiative transfer based models founded on MODTRAN4 code [43] and has look-up tables for diverse 

categories of the atmosphere. Various categories of aerosols are included in the FLAASH tool, which 

explains the air particle properties as absorption and scattering. The calculated radiance images were used 

as input for FLAASH tool. Over all the study areas, the maritime category were selected as aerosol model 

category, the atmospheric model was tropical for hot areas, and two blue and infrared bands over water 

were selected as aerosol retrieval [26]. Finally, the results were the atmospherically corrected reflectance 

images. 

3.2.1.3. Sun Glint Correction 

The sun glint correction was applied after the atmospheric correction. The sun glint errors were 

corrected using the correlation between the bands used for bathymetry detection and the near-infrared 

band [44]-[16]. The de-glinted pixel value can be determined using Eq. 2: 

Ri' = Ri * bi (RNIR - MinNIR)                                                           (2) 

Where Ri' = de-glinted pixel reflectance value, Ri = atmospherically corrected reflectance value, bi = 

regression line slope, RNIR = corresponding pixel value in NIR band, and MinNIR = min NIR value 

present in the sample. 

The following approaches used for bathymetry detection. 

1. Least Squares Boosting Fitting Ensemble [45] [46] [33]   

2. Bagging Fitting Ensemble [47] [48] [33]  

3. Support Vector Regression [49] [50] [33] 

4. Lyzenga Generalized Linear Model Approach [22] [16] [33] 

5. Artificial Neural Network Approach [14] [51] [33]   

For more details, the abovementioned references can be checked. 

3.3. Proposed Methodologies for Bathymetry Determination (the second part) 

The Landsat 8, Landsat 7, and Spot 6 multispectral images of the four studied areas were corrected for 

bathymetric mapping using the same abovementioned processing steps.   
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Figure 3-3 illustrate the workflow of the bathymetry detection steps. 

 

Figure 3-3. The processing steps of proposed methodologies for the second part of bathymetry mapping 

from satellite images by various approaches. 

The following approaches proposed for bathymetry detection.   

1. Random Forest [52] [8] [53]   

2. Multi Adaptive Regression Spline [54] [55] [56]    

For more details, the abovementioned references can be checked. 

3.4. Proposed Methodologies for Bathymetry Determination (the third part) 

For bathymetry mapping the NN and RF approaches were applied to the pre-processed Landsat 8 and 

Quickbird multispectral images and their predicted outputs were combined using BE algorithm. 

The Landsat and Quickbird multispectral images of the study areas were corrected for bathymetric 

mapping as follows:  

1) Converting the image pixel values to radiance values using the images metadata file values according 

to equation 1.  

2) Correcting atmospheric and sun glint errors for the image radiance values using the FLAASH tool and 

equation 2, respectively. These two steps were accomplished using ENVI 5.3 program.  
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3) Four inputs were extracted from the corrected reflectance images are used for training all approaches 

at the same location of sounding points. These values were red, green, blue/red, and green/red bands 

logarithms then the outputs were the detected water depths.  

4) For all study areas, these values were randomly separated to independent 65% training, 10% 

validation, and 25% testing points. For example, Shiraho study area field points were divided to 5472, 

608 and 2026 points for training, validation, and testing, respectively.  

5) BE approach was applied to ensemble the outputs from NN and RF methods. The 10% validation 

points were used for training the BE approach with NN and RF outputs as input values and predicted 

depths as outputs. 

6) Finally, the evaluation of all outputs from various approaches were determined using the same 

independent testing points depending on RMSE and R2 values.   

The following figure illustrate the workflow of the bathymetry detection steps. 

 

Figure 3-4. The Processing steps for the third part of bathymetry detection using BE approach. 

The following approaches proposed for bathymetry detection.   

1. Artificial Neural Network [14] [51] [33] 

2. Random Forest [52] [8] [53]   

3. Bagging Ensemble [11] [47] [57] 

For more details, the abovementioned references can be checked. 
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CHAPTER 4 

RESULTS  

4.1. Results of LULC Proposed Methodology 

The corrected input data was decreased to three principal components using 95% data variance. RF, 

SVM, and NN base classifiers were performed to Landsat 8 satellite image. At that point, bagging 

ensemble was used with these classifiers in a hierarchal structure. All these steps and the classification 

approaches were implemented in Matlab program environment.  

For evaluating the accuracy of all used classifiers, reference field data was collected from Landsat 8 

satellite image using field trip signature observations and old classified maps. The accuracy evaluation 

using omission, commission errors for all classes, and overall accuracy, with 1000 points as the test data 

uniformly spread over the study area. Table 4-1 presented evaluation results of the three single classifiers. 

Moreover, table 4-2 presented the related accuracy evaluation results of ensemble classifiers. 

Figure 4-1 illustrates the classification resulted maps of RF, SVM, NN, BE with RF, BE with SVM, and 

BE with NN approaches. 
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                                          (a) RF                                                  (b) BE with RF 

                           
                                         (c)  SVM                                               (d) BE with SVM 

                          
                                       (e)   NN                                                   (f) BE with NN 

Figure 4-1. Classification resulted maps for Landsat 8 satellite image. (a) RF (b) BE  with RF (c) SVM 

(d) BE with SVM (e) NN (f) BE with NN.  

Figure 4-2. Demonstrate classification accuracy enhancement using BE with RF, SVM, and NN with the 

three base classifiers.  

 

Figure 4-2. The classification accuracy enhancement using BE with the three base classifiers RF, SVM, 

and NN. 
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Table 4-1. The omission, commission errors for the five classes and overall accuracy of the three base 

classifiers RF, SVM, and NN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2. The omission, commission errors for the five classes and overall accuracy of BE with the three 

base classifiers RF, SVM, and NN. 

Classifier Class 
Com. 

Err. (%) 

Om. 

Err. (%) 

Overall 

Acc. (%) 

BE with RF 

Water 3.59 6.47 

93.3 

Vegetation 4.61 2.82 

Land 4.23 9.50 

Buildings 14.69 7.22 

Grass Lake 5.85 7.81 

BE with SVM 

Water 4.62 7.00 

92.6 

Vegetation 3.69 7.11 

Land 6.35 7.81 

Buildings 13.74 6.67 

Grass Lake 8.51 8.51 

BE with NN 

Water 5.13 8.87 

92.1 

Vegetation 5.53 5.09 

Land 7.41 6.42 

Buildings 13.74 7.61 

Grass Lake 7.45 11.68 

 

Classifier Class 
Com. 

Err. (%) 

Om. 

Err. (%) 

Overall 

Acc. (%) 

RF  

Water 5.01 7.32 

92.8 

Vegetation 4.15 6.73 

Land 6.70 5.24 

Buildings 12.44 10.66 

Grass Lake 7.98 5.98 

SVM 

Water 6.15 8.04 

92.6 

Vegetation 3.69 6.28 

Land 7.41 5.92 

Buildings 11.37 8.78 

Grass Lake 8.51 8.02 

NN 

Water 7.5 10.63 

91.4 

Vegetation 8.29 7.87 

Land 9.79 2.78 

Buildings 11.94 9.69 

Grass Lake 5.32 11.44 
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4.2. Results of First Part of Proposed Bathymetry Detection Methods 

The proposed methods for bathymetry mapping SVR, LSB and BAG were tested using the corrected 

Landsat 8 and Spot 6 multispectral images and compared with NN and GLM algorithms. GLM produced 

the following equations for bathymetry mapping over the four study areas respectively: 

ZEl Burullus= 3916.2 + 6231 LG – 6750 LR – 4088 B/R – 3670 G/R + 467.4 LG LR – 4069 LG B/R + 1565 LR 

G/R – 216.4 LG G/R – 4463 LR B/R + 4618 B/R G/R                                                                                (3) 

ZAlex port = 17.25 – 4.69 LG – 0.51 LR + 0.06 B/R – 0.10 G/R + 0.65 LG LR – 0.03 LG B/R – 2.30 LR G/R + 

0.06 LG G/R + 0.004 B/R G/R                                                                                                                    (4) 

ZNubia lake = 2912.2 – 904.96 LG + 1219.7 LR – 3024.6 B/R – 1900.7 G/R + 19.35 LG LR – 1.06 LG B/R + 

1.07 LR G/R – 18.44 LG G/R – 1281.1 LR B/R + 2143.8 B/R G/R                                                            (5) 

ZShiraho = –15.185 + 29.67 LG – 39.73 LR – 10.48 B/R + 73.43 G/R + 0.44 LG LR + 28.63 LG B/R – 15.2 

LR G/R + 5.09 LG G/R – 18.22 LR B/R + 3.36 B/R G/R                                                                           (6) 

Where LG is the computed logarithm of the corrected green band values, LR is the computed logarithm 

of the corrected red band values, B/R is blue divided by red and G/R is green divided by red logarithms 

band values.   

The SVR was performed using the PUK kernel function and the sequential minimum optimisation 

SMO for solving the optimisation problem. The SVR were performed using the following set of 

parameters after many trials: C = 1, ε = 0.0, ζ = 0.001, and tolerance = 0.001. The parameters of PUK 

kernel were σ = 0.5 and ω = 0.5. Alternatively, the NN has been trained using Levenberg-Marquardt 

backpropagation training function with 10 hidden layers. The regression ensemble algorithms LSB and 

BAG were ensembles with 50 regression trees. These parameters for each algorithm were selected to 

achieve the least possible RMSE and maximum R2 values. These algorithms and the statistical analysis 

were applied in MATLAB environment. The SVR code was originally established by Clark [58].        

Figures 4-3, 4-5, 4-7, and 4-9 show the produced bathymetric maps resulted from the three models 

using Landsat 8 and Spot 6 satellite images over the four study areas. Figures 4-4, 4-6, 4-8, and 4-10 

shows the assessment of the three models, and Tables 4-3, 4-4, 4-5, and 4-6 presents the resultant RMSE 

and R2 values. 
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(a) GLM 

    
                                               (b) NN                                                                        (c) SVR                                                                                            

     
                                                 (d)  LSB                                                                  (e) BAG 

Figure 4-3. Bathymetric maps produced from each algorithm using Landsat-8 imagery over El Burullus 

inlet area, Egypt. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG. 
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                                            (a)                                                                              (b) 

        
                                            (c)                                                                                (d) 

           
                                              (e)                            
Figure 4-4. The resultant continuous fitted models for El Burullus Lake area, Egypt. Depths are 

represented as points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR 

(d) LSB (e) BAG. 

 

Table 4-3. The resultant RMSEs and R2 of all methods for bathymetry mapping El Burullus inlet 

area, Egypt. 

Methodology GLM NN SVR LSB BAG 

RMSE (m) 1.19 1.07 1.12 1.15 1.02 

R2 0.79 0.84 0.825 0.82 0.86 
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                                                                              (a) GLM                                                                                            

                  
                                        (b) NN                                                                     (c) SVR                                                                                            

                   
                                        (d) LSB                                                                     (e) BAG 

Figure 4-5. Bathymetric maps produced from each algorithm using Landsat-8 imagery over Alexandria 

port area, Egypt. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG. 
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                                            (a)                                                                              (b) 

    
                                            (c)                                                                                (d) 

    
                                              (e)                            
Figure 4-6. The resultant continuous fitted models for Alexandria harbor area, Egypt. Depths are 

represented as points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR 

(d) LSB (e) BAG. 

Table 4-4. The resultant RMSEs and R2 of all methods for bathymetry mapping over Alexandria 

port area, Egypt. 

Methodology GLM NN SVR LSB BAG 

RMSE (m) 0.96 0.87 0.92 0.88 0.65 

R2 0.62 0.70 0.66 0.69 0.82 
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                                                           (a) GLM                                                                                                                     

                                                                                
                                        (b)  NN                                                             (c) SVR      

                              

                                        (d)  LSB                                                            (e) BAG 

Figure 4-7. Bathymetric maps produced from each algorithm using Spot 6 imagery over Nubia Lake 

entrance zone, Sudan. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG. 
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                                           (a)                                                                                  (b) 

          
                                           (c)                                                                                  (d) 

 
                                           (e)                                                                                       

Figure 4-8. The resultant continuous fitted models for Nubia Lake entrance zone, Sudan. Depths are 

represented as points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR 

(d) LSB (e) BAG. 

Table 4-5. The resultant RMSEs and R2 of all methods for bathymetry mapping for Nubia Lake 

entrance zone, Sudan. 

Methodology GLM NN SVR LSB BAG 

RMSE (m) 1.02 0.96 0.98 0.99 0.85 

R2 0.16 0.224 0.212 0.206 0.41 
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                                                       (a) GLM                                                              (b) NN                                     

       
                                   (c) SVR                                     (d) LSB                                         (e) BAG 

Figure 4-9. Bathymetric maps produced from each algorithm using Landsat-8 imagery over Shiraho 

Island area, Japan. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG. 
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                            (a)                                                                             (b) 

      
                            (c)                                                                              (d) 

  
                                        (e)                                                                                  

Figure 4-10. The resultant continuous fitted models for Shiraho Island, Japan. Depths are represented as 

points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR (d) LSB (e) 

BAG. 

Table 4-6. The resultant RMSEs and R2 of all methods for bathymetry mapping for Shiraho Island, 

Japan. 

Methodology GLM NN SVR LSB BAG 

RMSE (m) 1.16 1.08 1.11 1.09 0.80 

R2 0.73 0.78 0.75 0.76 0.88 
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4.3. Results of Second Part of Proposed Bathymetry Detection Methods 

The proposed methods for bathymetry mapping RF and MARS were tested using the corrected 

Landsat 8, Landsat 7, and Spot 6 multispectral images and compared with NN and GLM algorithms. 

GLM produced the following equations for bathymetry mapping over Nubia study areas in addition to the 

three equations 4, 5, and 6. 

ZNubia lake = – 4676 + 11.33LG – 317.2 LR + 13.49 B/R + 18.25 G/R – 45.02 LG LR – 0.26 LG B/R + 

0.03 LR G/R – 0.91 LG G/R + 10.48 LR B/R – 0.45 B/R G/R                                                (8) 

The MARS was performed using the following parameters:  

1) The maximum number of BFs in the forward phase before being pruned in the backward phase was set 

as 40.  

2) The GCV value was set as 4  

3) The linear piecewise modelling was used. Alternatively, the NN has been trained using Levenberg-

Marquardt backpropagation training function with 10 hidden layers. The regression ensemble algorithms 

LSB and BAG were ensembles with 50 regression trees. These parameters for each algorithm were 

selected to have the least possible RMSE and maximum R2 values. These algorithms and the statistical 

analysis were applied in MATLAB environment and the MARS model was originally established by 

Jekabson’s toolbox [59]. 

Figures 4-11, 4-13, 4-15, and 4-17 show the produced bathymetric maps resulted from the two 

proposed models using Landsat 8, Landsat 7, and Spot 6 satellite images over the four study areas, 

figures 4-12, 4-14, 4-16, and 4-18 the assessment of the two models, and tables 4-7, 4-8, 4-9, and 4-10 

presents the resultant RMSE and R2 values.  

 

          
                                       (a)                                                                                      (b) 

Figure 4-11: Bathymetric maps produced from Landsat-8 imagery over Alexandria harbor area, Egypt 

using (a) MARS (b) RF. 
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                                               (a)                                                                            (b) 

Figure 4-12: The resultant continuous fitted models for Alexandria port area, Egypt. Depths are appeared 

as points, and the solid line represents the continuous fitted model (a) MARS (b) RF. 

Table 4-7: The resultant RMSEs and R2 of all methods for bathymetry mapping over Alexandria port 

area, Egypt 

Methodology GLM NN MARS RF 

RMSE (m) 0.96 0.92 0.84 0.64 

R2 0.62 0.65 0.74 0.83 

   

  
                    (a)                                                                                 (b)                           

Figure 4-13: Bathymetric maps produced from Spot 6 imagery over Nubia Lake entrance zone, Sudan 

using (a) MARS (b) RF. 

               

                                                (a)                                                                              (b) 

Figure 4-14: The resultant continuous fitted models for Nubia Lake entrance zone, Sudan. Depths are 

appeared as points, and the solid line represents the continuous fitted model (a) MARS (b) RF. 
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Table 4-8: The resultant RMSEs and R2 of all methods for bathymetry mapping over Nubia Lake entrance 

zone, Sudan 

Methodology GLM NN MARS RF 

RMSE (m) 1.02 0.96 0.98 0.84 

R2 0.16 0.23 0.21 0.48 

   

     
                                                      (a)                                                                              (b)     

Figure 4-15. Bathymetric maps produced from Landsat-8 imagery over Shiraho Island area, Japan using 

(a) MARS (b) RF. 

 

 

                                (a)                                                                            (b) 

Figure 4-16: The resultant continuous fitted models for Shiraho Island, Japan. Depths are 

appeared as points, and the solid line represents the continuous fitted model (a) MARS (b) 

RF. 
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Table 4-9: The resultant RMSEs and R2 of all methods for bathymetry mapping over Shiraho 

Island, Japan 

Methodology GLM NN MARS RF 

RMSE (m) 1.16 1.08 1.10 0.81 

R2 0.73 0.78 0.75 0.87 
 

 

 

        
                                                (a)                                                                          (b)     

         
                                                  (c)                                                                        (d)     

Figure 4-17. Bathymetric maps produced from Landsat-7 imagery over Nubia Lake entrance 

zone, Sudan using (a) GLM (b) NN (c) MARS (d) RF. 
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                             (a)                                                                            (b) 

       
                             (c)                                                                             (d) 

Figure 4-18: The resultant continuous fitted models for Nubia Lake entrance zone, Sudan. 

Depths are appeared as points, and the solid line represents the continuous fitted model (a) 

GLM (b) NN (c) MARS (d) RF 

Table 4-10: The resultant RMSEs and R2 of all methods for bathymetry mapping over Nubia 

Lake entrance zone, Sudan. 

Methodology GLM NN MARS RF 

RMSE (m) 1.19 1.10 1.10 1.08 

R2 0.34 0.41 0.40 0.47 

 

4.4. Results of Third Part of Proposed Bathymetry Detection Methods 

The parameters of the NN training function was Levenberg-Marquardt backpropagation 

with 10 hidden layers. RF model was constructed with 50 regression trees and 2/3 split 

percentage. Finally, BE algorithm ensemble the outputs with 50 trees. These parameters were 

selected for each algorithm based on the least possible RMSE and highest R2 values. All 

these algorithms were implemented in Matlab environment.   

Figures 4-19 and 4-21 shows the bathymetric maps computed by applying each model 

using the Landsat 8 and Quickbird satellite images for each study area, Figures 4-20 and 4-22 

the evaluation of each model, and Tables 4-11 and 4-12 summarises the corresponding 

RMSE and R2 values.  
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                                  (a)                                                                        (b) 

                      
       (c)         

Figure 4-19. Bathymetric maps derived by applying each algorithm using Landsat-8 imagery 

over Alexandria harbor area, Egypt. (a) NN (b) RF (c) BE. 
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                              (a)                                                                      (b) 

 
(c) 

Figure 4-20. The continuous fitted models for Alexandria port area, Egypt. Depths are 

represented as points, and the continuous line represents the continuous fitted model (a) NN 

(b) RF (c) BE. 

Table 4-11. The RMSEs and R2 of all methods for bathymetry detection over Alexandria port 

area, Egypt. 

Methodology NN RF BE 

RMSE (m) 0.92 0.64 0.44 

R2 0.65 0.83 0.92 
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                                  (a)                                                                    (b) 

 
       (c)         

Figure 4-21. Bathymetric maps derived by applying each algorithm using Quickbird imagery 

over Shiraho Island area, Japan. (a) NN (b) RF (c) BE. 
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                         (a)                                                                      (b) 

 

     (c) 

Figure 4-22. The continuous fitted models for Shiraho Island, Japan. Depths are represented 

as points, and the continuous line represents the continuous fitted model (a) NN (b) RF (c) 

BE. 

Table 4-12. The RMSEs and R2 of all methods for bathymetry detection for Shiraho Island, 

Japan. 

Methodology NN RF BE 

RMSE (m) 1.06 1.05 0.96 

R2 0.826 0.832 0.855 

 

4.5. Summary 

This chapter outlined a pixel-based LULC classification methodology using the BE with RF 

in a hierarchal arrangement. This methodology was proposed and assessed using Landsat 8 

satellite image over a coastal heterogeneous territory. To confirm the efficiency of the 

presented approach over SVM and NN base classifiers, classification was applied using a 

Landsat 8 satellite image over Egypt’s Lake El-Burullus and its environments. All the 

necessary observed reference data were collected by manually on screen digitizing of the 

Landsat 8 image. The overall accuracy of the three base classifiers RF, SVM, and NN were 

92.8%, 92.6%, and 91.4% in that order. The BE resulted in 92.6% with SVM and 92.1% with 

NN. BE with RF produced a 93.3% overall accuracy percentage. 

In addition, three approaches for bathymetry mapping were presented. These approaches 

were applied over four diverse areas using Landsat 8 and Spot 6 satellite images. These areas 
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were selected to offer variation in studied surfaces, level of turbidity, and the water depths. 

The green, red, blue divided by red, and green divided by red band ratio logarithms corrected 

from atmospheric and sun-glint errors used as input data and water depth produced as output. 

To evaluate the presented methods, they were compared with the results of Lyzenga GLM 

and NN methods. All the produced results were also compared with field echosounder water 

depths values. The Lyzenga GLM correlation algorithm gave RMSE values of 0.96 m, 1.02 

m, and 1.16 m, though the NN produced RMSE values of 0.87 m, 0.96 m, and 1.08 m in the 

three study areas, respectively. The proposed approaches, SVR, LSB, and BAG, yielded 

RMSE values of 0.92 m, 0.88 m, and 0.65 m for the first study area, 0.98 m, 0.99 m, and 0.85 

m for the second study area, and 1.11 m, 1.09 m, and 0.80 m for the third study area, 

respectively.  

Moreover, the second part of the study proposed RF and MARS approaches for bathymetry 

mapping. These approaches were applied over four diverse areas using Landsat 8, Landsat 7, 

and Spot 6 satellite images. These areas were selected to offer variation in water surfaces, 

level of turbidity, and the water depths. The green, red, blue divided by red, and green 

divided by red band logarithms corrected from atmospheric and sun-glint errors used as input 

data and water depth produced as output. To evaluate the presented methods, they were 

compared with the results of Lyzenga GLM and NN methods. All the produced results were 

also compared with field echosounder water depths values. Lyzenga GLM correlation 

algorithm gave RMSE values of 0.96 m and 1.16 m, though the NN produced RMSE values 

of 0.87 m and 1.08 m in the four study areas, respectively. The proposed approaches MARS 

and RF yielded RMSE values of 0.92 m and 0.65 m for the first study area, 0.98 m and 0.85 

m for the second study area, and 1.11 m and 0.80 m for the fourth study area, in that order.  

Finally, BE as a hybrid based approach for bathymetry detection were tested. This 

approach was applied in two diverse areas with different number of available field points: 

Alexandria port, Egypt and a part of Shiraho Island, Japan, with 12.5 m water depths. For NN 

and RF methods the green and red band logarithms corrected from atmospheric and sun-glint 

systematic errors of Landsat 8 and Quickbird satellite images were set as input data and water 

depths as output. The proposed approach ensemble the outputs from NN and RF approaches. 

To validate the improvement of BE proposed approach, it was compared with NN and RF 

results. Achieved results were also compared with echosounder water depths field data. NN 

yielded RMSE values of 0.92 m and 1.06 m, RF gave 0.64 m and 1.05 m, though the 

proposed BE approach produced RMSE values of 0.44 m and 0.96 m over the two 
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investigated areas, respectively. Approximately 20 cm and 10 cm increasing in the accuracy 

of detecting depths over a silt-sand area and coral reefs area, respectively. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

5.1. Discussion for LULC classification 

BE was applied with the three base classifiers RF, SVM, and NN in a hierarchal 

arrangement. The number of bagging trees after try and error was 10 trees, based on the 

maximum overall accuracy and minimum out-of-bag error. RF trees splitting was performed 

using Gini index diversity criterion. The optimum number of RF trees was calculated based 

on the random combinations of the three input variables and the maximum overall accuracy. 

The maximum overall accuracy was accomplished using 10 RF trees.  

The commission and omission’s errors presents the enhancements of the classification 

accuracy using BE with three base classifiers RF, SVM, and NN. All the classes commission 

and omission errors were decreased with the exception of the building class. The efficiency 

of BE in reducing the variance of unstable algorithms, especially RF and NN, is confirmed. 

BE increases the overall accuracy of the two base classifiers as RF with 0.5% and NN with 

0.7% improvements.  

For evaluating the complexity cost of proposed approach, two factors were tested its 

computational time and usage memory space. While BE improves the computational time 

and usage memory space with SVM and NN base classifiers to approximately 7 times in 

average, this problem can be solved. Dividing the study area into successive zones and 

increasing the memory reduce this demerit. Moreover, BE with RF base classifier had less 

computational time and usage space than BE with SVM and NN base classifiers.  

5.2. Discussion for Bathymetry detection 

To select the appropriate bands for bathymetry determination, a statistical analysis was 

performed to investigate the correlation between water depths and various imageries bands. 

This investigation demonstrated a strong correlation between the red and green bands with 

water depths [24]-[16]. Besides the red and green bands, the blue/red and green/red band 

ratios also demonstrated a strong correlation to the water depths. 

The Lyzenga GLM model correlates the band combination directly to the water depth. In 

this research experiments, the best combination that achieved the lowest RMSE and highest 

R2 values occurred between the green and red band logarithms as well as the blue/red and 
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green/red band ratios. Also, NNs were used to perform a correlation between the multilayers 

of the imagery bands as an input and water depth as an output through multidimensional 

nonlinear functions. The research results agree well with those of previous studies such as 

Ceyhun and Yalçın [14] and Gholamalifard et al. [28], which have argued that NNs 

outperform conventional models as the Lyzenga GLM model or the Stumpf ratio model. An 

NN suffers from one major issue in that it requires many trials to find the best weights for 

correlation as it is an unstable black-box approach having significant fluctuations in RMSE 

and R2 values from one trial to another.  

The SVR algorithm, on the other hand, is a stable approach that uses minimum sequential 

optimisation to correlate the imagery bands with water depth. The optimum kernel function 

was selected, after several trials, from the radial basis function kernel, the polynomial kernel, 

and the Pearson universal kernel based on minimum RMSE and maximum R2. The latter 

outperformed the other kernel functions with the highest R2 and lowest RMSE. Also, the 

optimum SVR parameters, C, ε, ζ, ω, and σ, were selected based on the minimum RMSE 

criterion. 

LSB and BAG are fitting ensembles of regression tree algorithms that have two different 

theories for collecting regression trees. LSB works sequentially by focusing on the missed 

regression values of the previous tree. On the contrary, the BAG ensemble averages 

regression trees built from a bootstrapped random selection from input data. For both 

ensembles, the optimum number of regression trees was selected after sequential trials of 

various numbers of trees (10, 20, 30... 100), and the best values were achieved with 50 trees. 

Both algorithms use the Gini diversity index for the splitting trees that are not pruned. The 

randomness of the regression trees and the splitting of the data into training and testing sets 

argues that the ensembles were not overfitting the input data. The results illustrate a 

preference of all proposed algorithms to Lyzenga GLM in addition to outperformance and 

greater stability of the BAG ensemble compared to the NN approach. 

The MARS algorithm, on the other hand, is a stable approach that avoids overfitting and 

achieves comparable results to NN in the study areas. After several trials, the optimum 

number of BFs and GCVs were selected on the basis of the minimum RMSE and maximum 

R2.  

The RF algorithm is a fitting ensemble of regression trees algorithm that averages 

regression trees built from a bootstrapped random selection from input data. The optimum 

number of regression trees was selected after sequential trials of various numbers of trees, 
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following which the best values were achieved with 50 decision trees. Also, the Gini diversity 

index was used for the splitting trees that were not pruned. Two RF regression tree ensembles 

were created and combined. The randomness of the regression trees and the splitting of the 

data into training and testing sets ensured that the ensembles did not overfit the input data.  

Many researchers used low resolution satellite images for bathymetry detection especially 

Landsat images exploiting their free availability [28]-[16]-[15]-[60]. 

To compare achieved results with comparable studies many factors should be considered. 

These factors are images spatial resolutions, bottom type, water turbidity, availability of 

adequate number of field points in the study area, and depths range. For instance, Sánchez-

Carnero et al. [16] confirmed the outperformance of Lyzenga GLM compared to principal 

component analysis (PCA) and green band correlation algorithms using Spot 4 imagery with 

10 m resolution over turbid water in a shallow coastal area. The GLM yielded RMSE of 0.88 

m in a depth range of 6 m. Pacheco et al. [15] tested the Landsat 8 coastal, blue, and green 

bands for bathymetry detection using Lyzenga GLM over clear waters in a shallow coastal 

area and achieved an RMSE of 1.01 m in a depth range of 12 m. Also, Gholamalifard et al. 

[28] supported the better performance of the NN approach compared to PCA and a red band 

correlation using Landsat 5 imagery over a deep water area. The research produced RMSE of 

2.14 m in a depth range of 45 m. Kibele J. and Shears N. [61] proposed K-Nearest Neighbor 

(KNN) approach for detecting bathymetry over a clear coral reef area with large patches of 

sand and 20 m depths range. KNN method achieved RMSE of 0.8 m using Worldiew 2 

satellite image better than Lyzenga linear method. However, a large number of field points, 

approximately 300000 points, were required for training the algorithm. Linda et al. [30] 

developed Neuro-Fuzzy approach for detecting bathymetry over a sandy bottom coastal area 

with clear water using Quickbird imagery. A RMSE of about 0.64 m has been achieved over 

a depths range of 14 m with small training samples and a slight sea conditions. 

Our results are comparable to those of the studies for the NN and Lyzenga GLM 

approaches within the same depth ranges.  

5.3. Conclusions 

1) From the produced results, it can be concluded that BAG, LSB, and SVR approaches 

achieved more accurate results than Lyzenga GLM for bathymetry detection over four 

diverse study areas.  
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2) The outperformance of BAG approach compared to NN approach was confirmed over four 

diverse study areas. 

3) From the produced results, it can be concluded that RF and MARS approaches achieved 

more accurate results than Lyzenga GLM for bathymetry detection over four diverse 

study areas.  

4) The outperformance RF approach to NN approach was confirmed over four diverse study 

areas.  

5) BE ensemble provide more accurate results than using single NN or RF approaches for 

bathymetry mapping over diverse areas.  

6) From the presented classification results, BE enhances commission errors for the three 

base classifiers and decrease omission errors for RF and NN base classifiers also the 

precedence of BE with RF base classifier to other base classifiers, for instance SVM and 

NN was confirmed. 
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 ملخص

 

ت ىددى لاااقدديمللطقفددي  لل للاتدد ا اةلااضا دد لتصددفى الهدد الاليسى دد لذددالرددلةلاليتدديل لردد لتقدد  يلمتدديةلل  ىددى ل لذ ي  دد ل

ل يت ا اةلص ضلااققيضلالصفياى .لال يحطى ل لالبحىيات

الجدزءلذداللارلل يت ا اةلص ضلااققيضلالصفياى .لت لاقللااضا  لصفى مق ذجلذ  يحلل ل   ةفيلجزءلاا للذالاليتيل ل

ال ضات لاط لذفق  ل حىيةلالبيلسل لر لذفق د لتديحطى لذ ف اد ل ل ىديلذ جيم د ل لتد لتصدفىسهيللاقدسلامد االذدالال قديءل

الحشدديس .لالفقدد ذجلالق  دديحلااض دد للددقطملالقبدديم ل لالق ددقحيتلالقيسىدد ل لااضا دد لالزضااىدد ل لااضا دد لاليذطىدد ل ل

ىللااخقيءلالفيتجد لادالال بدي الفد لكقصف لضسى  لل  طل Random Forestلللل Bagging Ensemble   ا ةلالقجقعل

 لاخ ىدديضلال فيصدديلالقفيتددب للتصددفى لكددللخطىدد لاطدد لحدد ةل قي  دد لالدد  ط لالق ددب  قدد لتدد لاق ددياحلقتددط للقدديس لاطدد للف يسج.ا

 قديلالصدفيا لاللذيسىديت يتد ا اةللPrincipal Component Analysis  اتدق ل ي  د لذالال قيتلالق يحد للط صفى ل

ال فيصيلالق  ا ذ لذالالص ضةلر لاا  اللالق جى لال يحطى ل لالقيسى ل لتحملالحقياءل لالحياض د ل كيمملل.8ام تيتل

 يضم هديلذدعلذ يا يف لال لذؤليلالسيضملالق ىيضىللط قيءلالفبيت ل لال قيءلالقيس لل  ىى لدق ل ي  د لال صدفى لالق  يحد لتد ل

 لاللل Support Vector Machinesذدعل ي   د لالللBagging Ensembleينلذجقدعلالل دي   ىالتدي   ىال  د ا ذ

Neural Network لتدد لت ىدى لالف دديسجل ف دديلاخقديءلاا دديف ل لالف صددينل ال قد لالشدديذط .ل ل ىفددملالف ديسجلتسدد ملالقي  دد ل.

ل%92.1 لل%92.6فكيمدملم دب لدق هديل.لاذيلالقيملال ي   لل % 93.3الق  يح لاط لالقيملال ي   ل  ق لكطى ل ط ملم ب هيل

لاط لال  ال .لرلةلالف بلتؤك لتس ملالقي   لالق  يح لاط لالقيملال ي   .

 Bagging, Leastذ  يحد لرد لخ اضيذىد للمقديذجت ىدى لقداءللاثلاد لال ضاتد لالجدزءلالاديم لذداللالد قلل ذدالميحىد لقخديى

Square Boosting, and Support Vector Regressionلكيل يل :للذا طس لذفي  قىيسلالأاقيملف لقض   لللح ي يتل

ة؛لذفق د لل6إلد لتصدللقديالضذطد لاكديلذدعلقاقديملذاتلالقفق  لال يحطى لالضحط لذالذ خللالبيلس،لذصي،ل رد لذفق د ل

ةلل4ضذط لذدعلقاقديملت ديا حل دىالالقيذاتلذفق  لل ر لالإتكف ض  لال يحطى لالضحط ،لكقايللاط لال كيضةلالقفاسض ذىفيءل

القدىالذالقيالذاتلايلى ،ل ىيلذ   ية،لذفق  للذاتلاكيضةة؛لذفق  لذ خلل حىيةلالف   ،لال  دان،ل ال  لت  بيلل1..5 لإل

لتدد لاتدد ا اةلة.ل54ل صددللالدد لذفق دد للدد يللذيجيمىدد لذددعلاقدد  لردد لة؛ل للددىيار ،لجز دديةلإلددى يك ،لالىي ددين،لل6  قدد ل

 قدد لاتدد ا ذملرددلالالفقدديذجللل  ىددى لقداءلالفقدديذجلالق  يحدد .ل6تددب تلل لذيسىدديتل8ام تدديتلااققدديضلالصددفياى للذيسىدديت

ل الأيضملالف ددب ل ددىالل الأحقدديل لااخضدديلاا ىددياالق  يحدد للطحصدد للاطدد لخددياسلألقىدديسلالأاقدديمل يتدد ا اةلام كدديسل

الف ديسجللتقدملذ يضمد لم ديسجلقىديسلالأاقديمللطفقديذجلالق  يحد لذدعل.حقدي لاالخضدياالالقى ل ل ىالف بالالأحقيلإل لجيمبل

  يلق يضم لذدعلم دي ل.لNeural Network and Lyzenga Linear approachesت طى   ىاللتي   ىاال ي   ىالذالق ي ط ل

 ي  د لذ ديلقكاديلذدالل1...إلد لل4...ادالدقد لقاطد لت ديا حلذدالالقيملالاثلا لالق  يح ل،لكشسملم يسجللال ىيسلااض  

لالأكايلدق . Bagging Ensemble خ اضيذى للا زمجيلالاقى ل لكيمملم يسج

 Random Forest and Multi-Adaptiveلمقد ذج ل  يلإ ديف لإلدد لذلدإ،لفددزنلالجدزءلالايلددالذدالال ضاتدد لاق دديحل

Regression Spline (MARS)لتد لاتد ا اةل ىيمديتلذدال.ااققديضلالصدفياى لذيسىديتذداللخدياسلألقىديسلالأاقديملام يجل

 قد لاتد ا ذملردلالالفقديذجللطحصد للاطد لخدياسلألالأاقديمللى لقداءلردلالالفقديذج.ل  ىل6،ل لتب تل8،لام تيتل7ام تيتل

تد لاخ بديضلالا اضيذىديتلاطد لذفدي  لال ضاتد لالقدلك ضةلقادثال يتد افيءلذفدي  لل يت ا اةلمسسلالق خثتلالقلك ضةلقاثا.

 لالف دديسجلذددعلمسددسلالقددي   ىالتقددملذ يضمددل.7البدديلسلال دد لتدد لاتدد ب الهيل قفق دد لذدد خللالف  دد ل يتدد ا اةلصدد ضةلام تدديتل



  

 يلق يضم لذعلالف دي لالح طىد لكيمدملم ديسجلل.Neural Network and Lyzenga Linear approachesلاال  طى  لال ي   ىا

اداللRandom Forestتل ي  د لالل ادث ةلاطد لذلدإ،لقتدسيالقي   ىالالق  يح ىالافضللذال ي  د لا زمجديلالاقىد .ل

ل.Neural Networkافضللذال ي   لاللذالال ح ىفيتللذ يل51..الم يسجلقكايلدق ل ق  تلألق ض

 Bagging ي  دد لالل  دد ف لإلدد للاتدد ا اةل ي  دد رجىاللطدد ذجل قخىدديا،لفددزنلالجددزءلاليا ددعلذددالرددلالال ضاتدد لاق دديحل

Ensembleفدد لذفق  ددىالذ فدد ا ىالذددعلادد دلذا طدد لذددالالف ددي للالقي  دد لةتدد لتقبىدد لرددللقىدديسلالأاقدديم.لل قددللخددياسلألل

 فىقدديل   طدد للةلذددالالقىدديا.ل55.1قى امىدد لالق يحدد :لذىفدديءلالإتددكف ض  ،لذصددي،ل جددزءلذددالجز دديةللددىيار ل يلىي ددين،ل  قدد لال

 الأحقديلالط دىالتد لتصدحىحهقيلذداللااخضديلاا ىديالات ا اةت للRandom Forest and Neural Networkيمل يلق

كبىيمدديتللكدد  كبىيد لل8 ضلال قدديلالصددفيا لام تدديتلالشق دد لفدد لصددل لالدد ذى لذددالال ددثالالجدد ىللالأخقدديءلالقفهجىدد 

كقديلتد لل.مسدسلالقديملذفسديدة لط ح  لذالصح لتح ىالالفهجلالق  يحللتقملذ يضم هل ف ديسجللللإدخيلل قاقيملالقىيالكف اتج.

ت للف لل.5ت ل لل.5ح ال لم ب لال ح اللكينلالقح   ذالالف يسجلللأاقيملالقىيا.لالح طى ذ يضم لالف يسجلالقح   لذعلالبىيميتل

 ي   لدذدجلالف ديسجل ىج للللإ،ل قكالات ف يجلقنل مل،لاط لال  ال . لالقلك ضتىاتا ضاللذفق   لف اقيملادق لالكش لاالق

ل.لNeural Networkا للRandom Forest ي   لذفسيدةلت اءللللقكايلدق لذالات ا اةلخياسلأ جملق لقمالق  يح ل

ل
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